Food Safety Humor

FSPCA - Food Safety Preventive Controls Alliance

Wednesday, May 20, 2020

COVID Times - News Shorts for Week Ending May 23, 2020

CDC Changes Wording on COVID-19 Guidelines Regarding Surfaces - "[CDC] appears to have recently changed its guidelines from early March that initially said it “may be possible” to spread the virus from contaminated surfaces. The CDC now includes "surfaces or objects" under a section that details ways in which the coronavirus does not readily transmit"

Individuals Who Recovered from SARS-CoV-2 Virus Likely to Have Immunity - In a study published in Cell, researchers found that individuals who had been exposed to the virus had a significant immune response, which bodes well for developing a vaccine to the virus.

Nearly Two Hundred FSIS Inspectors Have Tested Positive for COVID-19

Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement
"The estimated decrease in daily fossil CO2 emissions from the severe and forced confinement of world populations of –17% (–11 to –25%) at its peak are extreme and probably unseen before. Still, these only correspond to the level of emissions in 2006."




https://www.cell.com/cell/fulltext/S0092-8674(20)30610-3
Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals

Alba Grifoni
Daniela Weiskopf
Sydney I. Ramirez

Davey M. Smith
Shane Crotty ∗
Alessandro Sette ∗

Show all authors
Show footnotes
Published:May 14, 2020DOI:https://doi.org/10.1016/j.cell.2020.05.015

Highlights

Measuring immunity to SARS-CoV-2 is key for understanding COVID19 and vaccine development

Epitope pools detect CD4+ and CD8+ T cells in 100 and 70% of convalescent COVID patients

T cell responses are focused not only on spike but also on M, N and other ORFs

T cell reactivity to SARS-CoV-2 epitopes is also detected in non-exposed individuals
Summary
Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide ‘megapools’, circulating SARS-CoV-2−specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike and N proteins each accounted for 11-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2−reactive CD4+ T cells in ∼40-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating ‘common cold’ coronaviruses and SARS-CoV-2.

Nature Climate Change
https://www.nature.com/articles/s41558-020-0797-x
Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement
Corinne Le Quéré

, Robert B. Jackson, Matthew W. Jones, Adam J. P. Smith, Sam Abernethy, Robbie M. Andrew, Anthony J. De-Gol, David R. Willis, Yuli Shan, Josep G. Canadell, Pierre Friedlingstein, Felix Creutzig & Glen P. Peters
Nature Climate Change (2020)Cite this article
2152 Altmetric
Metrics
details
Abstract
Government policies during the COVID-19 pandemic have drastically altered patterns of energy demand around the world. Many international borders were closed and populations were confined to their homes, which reduced transport and changed consumption patterns. Here we compile government policies and activity data to estimate the decrease in CO2 emissions during forced confinements. Daily global CO2 emissions decreased by –17% (–11 to –25% for ±1σ) by early April 2020 compared with the mean 2019 levels, just under half from changes in surface transport. At their peak, emissions in individual countries decreased by –26% on average. The impact on 2020 annual emissions depends on the duration of the confinement, with a low estimate of –4% (–2 to –7%) if prepandemic conditions return by mid-June, and a high estimate of –7% (–3 to –13%) if some restrictions remain worldwide until the end of 2020. Government actions and economic incentives postcrisis will likely influence the global CO2 emissions path for decades.
Main
Before the COVID-19 pandemic of 2020, emissions of carbon dioxide were rising by about 1% per year over the previous decade1,2,3, with no growth in 20193,4 (see Methods). Renewable energy production was expanding rapidly amid plummeting prices5, but much of the renewable energy was being deployed alongside fossil energy and did not replace it6, while emissions from surface transport continued to rise3,7.
Discussion
The estimated decrease in daily fossil CO2 emissions from the severe and forced confinement of world populations of –17% (–11 to –25%) at its peak are extreme and probably unseen before. Still, these only correspond to the level of emissions in 2006. The associated annual decrease will be much lower (–4.2 to –7.5% according to our sensitivity tests), which is comparable to the rates of decrease needed year-on-year over the next decades to limit climate change to a 1.5 °C warming32,33. These numbers put in perspective both the large growth in global emissions observed over the past 14 years and the size of the challenge we have to limit climate change in line with the Paris Climate Agreement.
Furthermore, most changes observed in 2020 are likely to be temporary as they do not reflect structural changes in the economic, transport or energy systems. The social trauma of confinement and associated changes could alter the future trajectory in unpredictable ways34, but social responses alone, as shown here, would not drive the deep and sustained reductions needed to reach net-zero emissions. Scenarios of low-energy and/or material demand explored for climate stabilization explicitly aim to match reduced demand with higher well-being34,35, an objective that is not met by mandatory confinements. Still, opportunities exist to set structural changes in motion by implementing economic stimuli aligned with low carbon pathways.
Our study reveals how responsive the surface transportation sector’s emissions can be to policy changes and economic shifts. Surface transport accounts for nearly half the decrease in emissions during confinement, and active travel (walking and cycling, including e-bikes) has attributes of social distancing that are likely to be desirable for some time27 and could help to cut back CO2 emissions and air pollution as confinement is eased. For example, cities like Bogota, New York, Paris and Berlin are rededicating street space for pedestrians and cyclists to enable safe individual mobility, with some changes likely to become permanent. Follow-up research could explore further the potential of near-term emissions reductions in the transport sector that could be delivered with minimal or positive impact on societal well-being.
Several drivers push towards a rebound with an even higher emission trajectory compared with the policy-induced trajectories before the COVID-19 pandemic, which include calls by some governments36 and industry to delay Green New Deal programmes and to weaken vehicle emission standards37, and the disruption of clean energy deployment and research from supply issues. The extent to which world leaders consider the net-zero emissions targets and the imperatives of climate change when planning their economic responses to COVID-19 is likely to influence the pathway of CO2 emissions for decades to come.




No comments:

Post a Comment